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On the electrostatics of cubic crystals 

M M Mestechkin and L S Gutyrya 
Institute of Physical-Organic and Coal Chemistry, Academy of Sciences of Ukraine, Rosa 
Luxemburg Sweet 70, Donelsk 340114, Ukmine 

Received 26 January 1993 

Abstract. The electrostatic potential in an ionic crystal is presented in lerms of the zeroth- 
order MacDonald function by means of decomposition of L e  q s t a l  lauice into seis of parallel 
lines with the periodic charge distribution with zero net charge within a period. The method is 
applied LO the calculation of the Madelung constants of a series of standard cubic lattices. doped 
fullerides and idealized Y-ELa-Cu-0 crystals. 

1. Introduction 

The discovery of the high-temperature superconductivity of copper oxide ceramics has 
revived interest in the ionic crystal theory (see, e.g., L1.21). A new boom has arisen in 
connection with the recent synthesis of carbon clusters C, of icosahedral symmetry. These 
clusters also form ionic cryst& if doped with alkali metals. This type of compound- 
fullerides-also manifests high-temperature superconductivity [3]. Superconducting systems 
such as KiC& possess various body- or face-centred crystalline phases, and this has 
focused attention on the calculation of the electrostatic energy of different fullerire crystalline 
modifications [4]. 

The main problems of the calculation of the Madelung constants were solved many 
years ago as a result of the methods of Madelung [5], Epsteio [6], Evald [7] and others 
[S-I I] and summarized in the comprehensive review by Tosi [ 121. However, in reality, 
computer programs are still used [2,4] but not explicit analytical expressions which allow 
one to observe the details of the potential formation. 

Here our purpose is to present simple analytical formulae for the Madelung constants, 
vacancy potentials and electrostatic contributions to the crystal surface energy. The method 
used is similar to the Evjen 181 technique; however, the domain considered, the straight line 
with the total zero charge, is infinite. As a result of application of the Hund [13] lattice 
superposition principle the Madelung constants have a simple analytical form in terms of 
the zeroth-order MacDonald function. For the latter, simple interpolation formulae exist 
which ensure sixdecimal accuracy (equation (9.86) of [14]). 

2. Equations for the geometric factors of the potential 

Let us calculate the potential of a set of charges iq situated on a straight line with a distance 
d between them. In the cylindrical coordinates p ,  L in units of d with the origin at +q 
which can always be chosen so that at -1 < z c 1 the potential 

(--l)'[P* + (k + z)2]-'/2 

d k=-m 
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is an even periodic function. The period is equal to 2 
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( o h  z + 2) = ( o h  2) = P ( P ,  -2). 

A substitution of k by k - 1 leads to 

rp(P9 z + 1) = -(o(/J, 2) 

from which it follows that 

(o(P, i) = -cp(p, -;) = -&A 4) = 0. 

w, 2 )  = Can(P)cos(nnz)  

Therefore the Fourier series for q(p ,  z )  is 

m 

n=1 

where 

vanish for n even and reduce to 

( 5 )  

for n odd according to equation (3.771.2) of [IS], where KO is the zeroth-order MacDonald 
function. As a result the main electrostatic sum is 

m 
p(p, Z) = 4 Ko(x(U - 1)p)  COS[(^^ - l)az] 

I=I 

(compare with equation (B18) of [12]). In fact, only a few terms remain in equation (8) 
as a consequence of the more than exponential decrease in the MacDonald function, e.g. 
K o ( 5 X )  is already less than 5 x lo-*. 

It is worthwhile to mention that for p = 0 the left-hand side of equation (8) is reduced 
to 

cO(0,z) = B ( z )  + LV-4 + I l z  (9) 

in spite of the fact that Ko(0) is infinite where according to [ 151 

and r is the Euler gamma function. In order to find the potential in the lattice node it is 
necessary to subtract the self-interaction term l/z. Then 
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With the condition that (~(0.0) describes the node potential we shall define 

p(0,O) = -21112. (12) 

The generalization of equation (7) (see equation (3.771) of L1.51) 

allows us to consider in a similar way the potential of the multipole chain, etc. It should be 
mentioned that numerical values of Ko(x) are given by the six-order polynomial over Z/x 
multiplied by exp(-x) with an accuracy of IO-' [I41 while 

p ( $ ) = n / Z  p(f)=In4+n/& p($)=x/&-ln4 (14) 

p(& p ( - t ) ,  etc, are known 'exactly' [15]. 
Similarly to equation (2) the potential of a set of identical parallel lines is also a periodic 

function of z with the same period 2. Three sets denoted by L*(d, rid) and M(d, r / d )  
will be used below. Here r is a period AD of the square network in the perpendicular 
plane ABCD which the parallel lines mentioned (AA', BB', ...) intersect at the vertices of 
the network. In the first case (L+) the charges at the vertices A, B, C and D are identical; 
in the second ( L - )  they differ in the neighbouring vertices as well as in the third case (M).  
However, in the latter case the charges are identical along each 'vertical' line (figure I). 
For L+(d, r / d )  it is sufficient to find the potential at the points of the prism AEENLM. 
The potential vanishes on its upper face, changing from the maximal values on the base 
mainly according to the cosine law (equation (8)) with the addition of an increasing number 
of higher harmonics when approaching the vertex A. We shall be interested in the potential 
values mainly at the node A, at the edge middle E and at the face centre F and more rarely 
at the points P, Q and R (figure 1). If the potential is presented in the form 

V = g(u)q/d U = r /d  (15) 

the geometrical factors will be 

and for the arbitrary point ( x ,  y) on the base 
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I I 
Figure 1. The main points of lhe cubic cell. 

where x and y are measured in units of r and the notation 

m 
R ( P )  = d P .  0) = 4 KO(d21 - 1)P) (20) 

k I  

has been used. 

appear: 
It is interesting that. in L-(d ,  U ) ,  new quantities in the geometrical factors h(u) do not 

hE(U) = ~ F ( u )  = h&) = 0. (22) 

To consider the system M(d, U) we first calculate. the potential from a horizontal plane 
situated at the distance Id  from A at this point. Since the horizontal lines of alternating 
charges intersect the vertical plane at the points (s, f / u ) ,  

Therefore the geometrical factors m ( u )  will be 
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In the same manner we obtain a new expression for ~ A ( u )  which is convenient for small r 
and large d in contrast with equation (21) which is applicable in the opposite case: 

There are many other useful identities between the introduced quantities. If we add 
to the set L+(d ,u )  its copy L$(d ,u )  with the origin at F or subtract it, a similar set 
L*(d, ./a) rotated by 45" results: 

L+(d, U) * L:(d, U) = L'(d, U/&). (27) 

Simultaneously points F, E, R, P and Q turn into B, F, E, R and '-'R in the new set. 
Eguating suitable geometrical factors we have 

gA(U) + gF(U) = gA(U/Z/Z) 2gE(U) = gF(U/z/?) (28) 

and 

= &(U/&) = $&($U) gP(u) fgQ(U) gR(u/&) = $&($U). (2% 

Similarly to equation (21), 

gA(u) = gA(2U) + gF(2U) f zgE(2U) gA(U) - gF(U) = hA(U/&). (30) 

In particular cases from equations (21) and (28), 

hA(fi) = gA(2) - gF(2) 

and from definitions (23), (24) and (16H18) the equalities 

result while equation (26) gives 

= mA(1/&) -mM(l / a ) .  (33) 

Another type of identity follows if we note that the vertical plane in set L+(d, 1) is 
formed by 45"-rotated lines of alternating charges and only every second line gives a non- 
zero potential on the line AD. Since the distance between these lines is A, it is clear that 
we deal with the set M ( d ,  a) rotated around the horizontal axis by 45". Therefore 

gA(1) = mA(z/Z) = mM(fi) (34) 

gA(1) = $[mA(1/& + mM(1/z/?)]. 

and from the definitions (24) and (25) it follows that 

(35) 
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Solving equations (35) and (33) for m ~ ( l / f i )  and mM(l/fi)  and taking into account 
equations (30) and (31) we have 
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mA(l/fi) zkA(2) f &'E(z)) mM(l/&) =2kE(2) +gF(2)1. (36) 
Thus it is evident from equations (30x32) and (36) that the key quantities are gA(2). 

g ~ ( 2 )  and gF(2) for which special notation will be used: 
a = g ~ ( 2 )  = -2ln2+ 16[K(4)+K(8)+ K(16)+2K(20)] = -1.370683 

b = g F ( 2 )  = 16[K(2)+2K(10)+2K(18)] =0.109706 (37) 

~=g5(2 )=8(K( l )+Z[K(5)+  K(9)+K(13)+ K(17)]}=0.243293 
where for brevity it was denoted 

K o ( n f i )  = X ( x ) .  

3. Madelung constants for standard cubic lattices 

Now we can turn to the calculation of the Madelung constants of real lattices. 

3.1. NaCl type 

It is evident that this lattice with Na atoms situated at points A (figure 1) and CI at points 
B, A', D, etc. is simply the set L - ( i R ,  1) where R is the lattice constant. Therefore the 
Madelung constant according to equations (21) and (37) is 

(40) 
in accordance with [12]. The corresponding constant for a single NaCl layer results from 
potential (23) V ( 0 ) :  

a(NaCI,layer) = f=2[2in2+8[K(l)+2K(9) -K(4)-K(16)])=3.231084. (41) 
As a result the surface (100) Madelung constant is 

(42) 
which corresponds to the results in [16]. 

The plane layer CuOz in Ba-h-Cu-0 ceramics may be considered as a set of +4 
charges formed by all atoms situated above and under Cu in a cell and of -2 charges of 
0. Thus +Zq must be placed at A (figure 1). -4 at B and D while C remains empty. This 
means that the layer considered is a superposition of the NaCl layer and its 45"-rotated copy 
with the lattice constant d&. Then 

r 

cu(NaCI) = - -2h~(1 )  = 4c - 2a - 2b = 3.495 126 

a(NaCI, surface) = $[f + a(NaCI)] = 3.363 105 

f(Cu) = -(g+ &/4)f = -2.757903 

f(vac) = -($ - &/4) f = -0.473 181. 

f(0) = f 
(43) 
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3.2. Perovskite (BaBi03J type 

Here the doubled (Bi) positive charges are at A. B, C and D, a single (Ba) charge at N, 
and negative (0) charges at the edge middles E, M, E', etc (figures 1 and 2). Therefore 
subtracting from this lattice the set L - ( i R ,  a) we reduce the charges at A, A', etc. twice, 
annihilate the charges at the vertical edge middles and bring the positive charges fiom the 
cell centre N to the face centre F, i.e. transform the lattice into the set M ( R ,  4). Symbolically 

L ( B ~ B ~ o ~ )  = L - ( ~ R ,  Jz, + M ( R ,  4). (44) 

Equating the geometrical factors according to equation (44), we have 

g(Bi) = %A(&) + mA(f) = 4a - 26 - 2c = -6.188730 

g p a )  = 2hA(2) + mM(&) = 2a + 2c - 4b = -2.693604 

g(0)  

&'@'I = -2hA(fi) + m d i )  = g ( 0 )  

g(VaC. F) = - 2 h ~ ( f i )  

%F@) - m ~ ( i )  = 2c - 2a = 3.227952 

mA(4) = 26 - 2C = -0.267 174 

g(vac. P) = -g(vac, Q = 2 h ~ ( & )  + mp(f) = 2[gp(2) - g ~ ( 2 ) l  = 1.319670 

(45) 

where equations (22). (30H32) and (39) and mp(f) = 0 have been taken into account The 
Madelung constant for the perovskite lattice is 

cy(BaEii03) = $[3g(O) - g(Ba) - 2g(Bi)] = -2g(Bi) = 12.377460 (46) 

since according to equation (45) the identity 

3g(O) + 2g(Bi) - g(Ba) = 0 (47) 

holds. 

Bi Bi Ba 6a 
Fbre 2. BaBQ cell with origins at Bi and Ba 



6690 

33.  CsCl type 

In this lattice, Cs atoms are at A, B, C and D and Cl at N (figure 1). If we subtract the 
set LC(4R, 2) with the origin at F, chlorine atoms move into the face centres and the set 
M ( R ,  I/&) appears. Thus 
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L(CsCl) = L’(iR.2) + M ( R ,  I/&). (48) 

In the same manner as before, 

g(cS) = 2gF(2) + mA(f/&) g(cI) = -2gA(2) -mM(!/&). (49) 

Naturally from equations (36) and (37) it follows that 

g(C1) = -g(Cs) = -2(a + b + c) = 2.035 368 (50) 

in complete agreement with [12]. Similarly we have 

g(vac, E) = Z g ~ ( 2 )  + m ~ ( l / & )  = 2c = 0.486586 
(51) 

g(vac, F) = zgA(z) - m,,(i/&) = -ZC = -g(vac. E). 

Considering the superposition L(BaBiO3) fkL(CsC1) we deal with a perovskite crystal 
in which the relative charges of the Bi and Ba sites are 2 - f k  and 1 + i k ,  i.e. k electrons 
are transferred from Ba to Bi. The new geometrical factors will be g(Bi) = -6.188 130 + 
2.035 368k/2, g(Ba) = -2.693604 - 2.035368k/2, g ( 0 )  = 3.227952 - 0.486586k/2. 
Therefore the electrostatic energy of the elementary cell 

- $ [ ( 2  - ;k)g(Bi) + (1 + $k)g(Ba) - 3g(0)1 

is maximal for k = 1.7172 when the charges on Bi and Ba are 2.2828 and 3.7172 but not 
equal as they would be for two isolated charges with a fixed sum. The real structure of 
BaBiOs corresponds to the maximal deviation from such an unstable charge distribution. 
For both trivalent cations this structure becomes less stable. For instance, in LaCuO3 the 
oxygen atoms move towards the Cu site and the lattice transforms into the Rjc symmetry 
type. Nevertheless the potentials V ( 0 )  = 21.89 and V(Cu) = -38.48 calculated fork = I 
with the lattice constants of kicuo, do not deviate essentially from their values in the 
real crystal: 22.32 and -38.21 [!I. A similar picture is obsewed for LazCuO4 where the 
corresponding values are 22.21 and -28.0 while in [l] they are 21.65 and -27.57. 

3.4. CaFz, CuzO and zincblende types 

The application of the Hund lattice superposition principle enables us to calculate directly 
the geometric factors for the lattices mentioned from those already obtained. It is clear that 
the addition of the NaCl lattice with the origin at S (figure 1) and with the same minimal 
charge to the ZnS lattice transforms the latter into its copy with empty and full small cubes 
interchanged. As a result, S ‘shifts’ to the point T. Therefore 

g(T) + g(CI) = g@). (52) 
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A similar result is achieved if we subtract L(CsCI) with the halved lattice constant from 
L(ZnS). However, in this case the transformed lattice is shifted by R d / 4  along the main 
cube diagonal, and the positive charge appears at T 

g(T) + M C s )  = g ( W .  (53) 

Simultaneously the centre of the small cube edge P transforms into a point equivalent to 
the face centre of this cube: 

(54) 

Naturally g(S) = -g(Zn) as well as g(R) = -gp) since P and R take similar positions 
relatively to S and Zn. Now we can solve equations (52H54) and obtain, taking into 
account equations (40), (50) and (51), 

g(S) = -g(Zn) = fg(C1) - g(Cs) = -3(a + b) = 3.782931 

g(P) - 2g(vac, E) = g(R). 

g(vac, T) = -g(vac, oct) = -g(Cs) - 2g( CI ) = -U - b - 4c = 0.287 805 (55) 
g(P) = -g(R) = g(vac, E) = 2c = 0.486586. 

Since the C a F 2  lattice is a superposition of L(ZnS) with its copy we immediately have 

&a) = -2g(S) = 6(a + b) = -7.565 862 

g(0 = g ( S )  + g(T) = -2g(cS) = -4(a + b + C) = 4.070736 

g(oct, vac) = 2g(vac, oct, ZnS) = 2(a + b + 4c) = -0.575 61. 
(56) 

The Madelung constant for this crystal is 

cu(CaF2) = g(F) - g(Ca) = 11.636 598. (57) 

It is not difficult to note that, in contrast with ZnS, in Cu20 the anions form a body- 
centred and not a face-centred lattice. From figure 2 it is clear that adding to $L(ZnS) the 
perovskite lattice with the same minimal charge and Ba coincident with Zn transforms the 
ZnS lattice into the body-centred lattice with the doubled cation charge: 

LL(ZnS) 2 + iL(BaBiO3) = -L(Cu20) (58) 

where the coefficients are attributed to the minimal charges in the corresponding lattices. 
As before, from equation (58) it follows that 

g ( 0 )  = -g(Zn) - g(Ba) = -5a + b - 2c = 6.476535 

g@, vac, Cu20) = -g(vac, oct) - g(vac, E) = -a + b - 6c = 0.020631 

g(CU) = -g(S) = 3(a + b) = -3.782931 

and 

(~(Cu20) = g(0) - g(Cu) = 10.259466. (59) 
Thus we have demonstrated in detail how the technique proposed works in the case of 

traditional cubic lattices and gives for the Madelung constants the same results as have been 
tabulated in LIZ]. Now we shall consider some more actual examples. 
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Figure 3. Transformation of Ihe BCC type into the A15 
type. into A:%;. 

Figure 4. The first step of msformation of A:C$ 

4. Potential geometrid factors in some fullerides and other crystals 

The various crystalline modifications of fullerides A:CZ are interesting examples to 
demonstrate the above technique. In the first case, C, cages form a face-centred lattice 
(AA'LD) with the cations in the tetrahedral (S and T) and octahedral (E, E' and M) positions 
(figure I). It is clear that this lattice is simply a superposition of L(CaF2) and L(NaCI) 
with the opposite signs. Then 

g(C,) = -g(Ca) - g(Na) = -4(2a + 2b - c) = 11.060988 

g(A, tetr) = -g(F) = 4(a + b + c)  = -4.070736 

g(A,oct) = -g(oct.CaF2)+g(Na) = -12 = -2.919516. 
(60) 

The next phase is a body-centred lattice of & while cations occupy the centres of 
the edges and of faces. From figure 2 we see that here L(A:C&) = &[L(BaBiO,) + 
L'(BaBi03)I. Therefore, 

g(%) = -g(Ba) - g(Bi) = -6a + 6b = 8.882334 

g(A) = -g(O) - g(vac, F) = 20 - 26 = -2.960778 (61) 

and both positions of cations are equivalent here. 
A more complicated situation arises in a Pm% lattice which is obtained from the 

preceding lattice by moving cations by R/4 from the edge middles and from the face 
centres in the three mutually perpendicular directions shown by mows in figure 3. One 
such motion is achieved by the subtraction of a properly oriented set Lt($R,4) with 
the origin at the edge middle. As a consequence of the presence of the large coefficient 
U = 4 in equations (16)-(19), suitable sums can, in fact, be made to reduce to a 
single term. The initial geometrical factors for anion and for cation were -60 + 6b and 
-2g(vac, Q) = 2.63934 according to equation (45). The displacement in the z direction 
adds to these the term 4g~(4)  =4[-2ln2+ 16K(16)] = -5.5451 for acation at point 2, 
the term -4g~(4) = -32[K(5) + K(13)I = -0.01338 for cations at points X and Y and 
the term -4g~(4) = -32K(4) = -0.029332 for the anion as follows from a comparison of 
figure 1 with figure 3. The coefficient 4 appears since the geometrical factors are attributed 
to R rather than to d. All three displacements in common contribute. -12g8(4) to the anion 
and 4[g~(4) - 2&'Q(4)] to each cation. Finally 

g ( C d  = 8.794338 g(A) = -2.93252. (62) 
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The final example, the BCC lattice AZC;;, is obtained from the BCC lattice A:C& by 
means of a two-stage shift. In the first stage, four shifts of the type already considered 
and indicated by arrows in figure 4 should be superposed. The appropriate contributions to 
the potentials are easily calculated as before in terms of the constants ~ ~ ( 4 ) .  The resulting 
lattice of the first stage is shown in figure 4. It remains only to move up by f R  the unit 
negative charges from the middles of the horizontal faces and of the vertical edges, and this 
can be achieved by adding the lattice from figure 5 which is simply the set L - ( $ R ,  &). 
As a result the geomehical factors are 

g(C,) = 8 ( b - a - 2 g ~ ( 4 ) ) =  11.725784 
(63) 

g(A) -3g(VaC, Q )  + 4[gA(4) - gp(4) - gQ(4) + gF(4)I = -2.068458 

where 

gp(4)=4[K(l)+K(9)]=0.118167 gp(4) = 16K(8)=0.000918. (64) 

Figure 5. The point-charge distribution in an auxiliary 
WU. 

From the factors given, it is not difficult to find the Madelung constants per cation 
which coincide with the results of the computer calculation [4] and, taking into account 
the intemal anion energy [ 171, give the relative stabilities of the three phases considered in 
accordance with experiment [4]. 

4.1. Idealized Y-Ba-Cu-0 ope 

'Idealized' means that all atoms are situated at the lattice nodes and symmetry points, 
trivalent Cu at the edge cell planes and divalent Cu in the middle planes, and also that 
c = 3R and a = b = R (figure 6). A simple preliminary generalization of the basic 
equation (8) is necessary here. If within a period d there is an arbitrary distribution of p 
charges 41. 42, . . . , qp placed at distances 0 < a1 < a2 c . . . < up < 1 (in units of d )  from 
the period origin, then by means of the same technique as before we obtain 

where 

P 
Q, = Eqsexp(-2rrina,). 

s=l 
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The infinite term Ko(0) is absent in equation (65) because the net cell charge Qo = E,"=, q. 
vanishes, and we can rewrite V ( p ,  z )  in the real form 

M M Mestechkin and L S Gutyrya 

For p = 2.91 = q, 42 = -4. a1 = 0. a? = 2 the coefficient Q. = 411 -(-I)"] returns us 
to equation (8) written in terms of the doubled unit length. If the distances between charges 
are equal, i.e. U, = (s - l)/p, Q, is a periodic function of n: Qncp = Q.. 

A set of parallel lines of the above type with the smallest mutual distances u d  
will be denoted by L'P'(d, U) with the following correspondence to the former notation: 
L12'(2d ,  $U) = L t ( d ,  U )  where p in fact denotes the whole set of charges q1.42, . . . , qp 
and their positions. For the Y-Ba-Cu-O lattice the set L'@(3R,  f )  with the following 
six charges will be necessary: q1 = 1,al = 0; q2 = 0,az = $; q, = -2,a3 = 7; 
q ~ = 3 , u q = ~ ; q 5 = - 2 , ~ 5 = f ; q ~ = O , u ~ = ~ .  ThenQn=1+3( -1 ) " -4cos (~an) ,  
and equation (65) reduces to 

1 

V ( p ,  Z) = 8 ( K o ( k / 3 p )  COS(4n/32) - Ko(21p) cos(2nz) + Ko(8~/3p) COS(8R/3Z) 

+ KO( 16a/3p)  cos( 16n/3z) - Ko(6np) cos(6nz) 

+ K ( 2 0 n / 3 p )  cos(20~/3z))/R (68) 

where p and z are measured in units of R, and the argument 28n/3 of the first omitted 
term exceeds 4 n  for the smallest required distances p = $. As a result the expressions 
for the geometrical factors (16)-(19) continue to be valid for the set L'6' if the function 
R ( p )  from equation (20) is substituted by 2A(p) - p ( p )  for the points in the bottom plane 
in figure 6 and by -A@) + p ( p ) ,  -A(p) - p ( p ) ,  U ( p )  + p ( p )  for the next three atomic 
planes, respectively, where 

A(p)  = 4[Ko(4n/3p) + Ko(8n&) + Ko(l6n/3p) -k Ko(~OX/~P)I 

AP) = 8 K 0 ( 2 ~ ~ )  + ~ K O ( ~ Z P ) .  
(69) 

Now we turn to the lattice potentials. Since the number of important points is rather 
large, we outline briefly only the general decomposition of the lattice without explicit 
calculation of the geometrical factors for all non-equivalent atomic sites. The latter is 
already a simpler problem. Naturally the decomposition procedure is ambiguous; only the 
condition QO = E:=, qs = 0 is guaranteed at each step. 

If we introduce at the set symbols L ,  M ,  etc. also the notation of the origin position 
(rotation of the plane axes by 45" is recognized because of the presence of d? in the 
arguments), figure 7 becomes self-explanatory. In the final step, besides Lt6)(3R, f )  (shown 
explicitly), three plane sets P of parallel lines describing displacements of the indicated 
charges to the central axis have appeared. The volume sets here are unnecessary since the 
distance between similar planes is six times the displacement length, and the planes do not 
interact. Thus the identity 
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Figure 6. The unit cell of the idealiEd Y-Ba- 
CU-0 lattice. 

Figure 7. The decomposition procedure for Y-Ba-Cu-0. 

allows one to calculate geometrical factors for each atom by means of equations (16H19) 
and (69). 

In a similar way we can optimize the valences of Cu atoms in non-equivalent positions 
when their charges may be assumed to be 3 - q and 2 + tq. This requires us only to add 
to equation (70) the set L2’(3R, f )  with the corresponding potential 



6696 M M Mestechkin and L S Gutyrya 

and to determine 9 from the minimumenergy condition. However, for the latter only the 
electrostatic argument is insufficient. 
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